Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.

Identifieur interne : 002140 ( Main/Exploration ); précédent : 002139; suivant : 002141

Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.

Auteurs : Andrea Ghirardo [Allemagne] ; Louwrance Peter Wright ; Zhen Bi ; Maaria Rosenkranz ; Pablo Pulido ; Manuel Rodríguez-Concepci N ; Ülo Niinemets ; Nicolas Brüggemann ; Jonathan Gershenzon ; Jörg-Peter Schnitzler

Source :

RBID : pubmed:24590857

Descripteurs français

English descriptors

Abstract

The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.

DOI: 10.1104/pp.114.236018
PubMed: 24590857
PubMed Central: PMC4012595


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.</title>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg</wicri:regionArea>
<wicri:noRegion>85764 Neuherberg</wicri:noRegion>
<wicri:noRegion>85764 Neuherberg</wicri:noRegion>
<wicri:noRegion>85764 Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wright, Louwrance Peter" sort="Wright, Louwrance Peter" uniqKey="Wright L" first="Louwrance Peter" last="Wright">Louwrance Peter Wright</name>
</author>
<author>
<name sortKey="Bi, Zhen" sort="Bi, Zhen" uniqKey="Bi Z" first="Zhen" last="Bi">Zhen Bi</name>
</author>
<author>
<name sortKey="Rosenkranz, Maaria" sort="Rosenkranz, Maaria" uniqKey="Rosenkranz M" first="Maaria" last="Rosenkranz">Maaria Rosenkranz</name>
</author>
<author>
<name sortKey="Pulido, Pablo" sort="Pulido, Pablo" uniqKey="Pulido P" first="Pablo" last="Pulido">Pablo Pulido</name>
</author>
<author>
<name sortKey="Rodriguez Concepci N, Manuel" sort="Rodriguez Concepci N, Manuel" uniqKey="Rodriguez Concepci N M" first="Manuel" last="Rodríguez-Concepci N">Manuel Rodríguez-Concepci N</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</author>
<author>
<name sortKey="Bruggemann, Nicolas" sort="Bruggemann, Nicolas" uniqKey="Bruggemann N" first="Nicolas" last="Brüggemann">Nicolas Brüggemann</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24590857</idno>
<idno type="pmid">24590857</idno>
<idno type="doi">10.1104/pp.114.236018</idno>
<idno type="pmc">PMC4012595</idno>
<idno type="wicri:Area/Main/Corpus">002280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002280</idno>
<idno type="wicri:Area/Main/Curation">002280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002280</idno>
<idno type="wicri:Area/Main/Exploration">002280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.</title>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg</wicri:regionArea>
<wicri:noRegion>85764 Neuherberg</wicri:noRegion>
<wicri:noRegion>85764 Neuherberg</wicri:noRegion>
<wicri:noRegion>85764 Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wright, Louwrance Peter" sort="Wright, Louwrance Peter" uniqKey="Wright L" first="Louwrance Peter" last="Wright">Louwrance Peter Wright</name>
</author>
<author>
<name sortKey="Bi, Zhen" sort="Bi, Zhen" uniqKey="Bi Z" first="Zhen" last="Bi">Zhen Bi</name>
</author>
<author>
<name sortKey="Rosenkranz, Maaria" sort="Rosenkranz, Maaria" uniqKey="Rosenkranz M" first="Maaria" last="Rosenkranz">Maaria Rosenkranz</name>
</author>
<author>
<name sortKey="Pulido, Pablo" sort="Pulido, Pablo" uniqKey="Pulido P" first="Pablo" last="Pulido">Pablo Pulido</name>
</author>
<author>
<name sortKey="Rodriguez Concepci N, Manuel" sort="Rodriguez Concepci N, Manuel" uniqKey="Rodriguez Concepci N M" first="Manuel" last="Rodríguez-Concepci N">Manuel Rodríguez-Concepci N</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</author>
<author>
<name sortKey="Bruggemann, Nicolas" sort="Bruggemann, Nicolas" uniqKey="Bruggemann N" first="Nicolas" last="Brüggemann">Nicolas Brüggemann</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butadienes (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Down-Regulation (radiation effects)</term>
<term>Erythritol (analogs & derivatives)</term>
<term>Erythritol (metabolism)</term>
<term>Hemiterpenes (biosynthesis)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Light (MeSH)</term>
<term>Metabolic Flux Analysis (methods)</term>
<term>Models, Biological (MeSH)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Pentanes (MeSH)</term>
<term>Pigments, Biological (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Plastids (enzymology)</term>
<term>Plastids (metabolism)</term>
<term>Plastids (radiation effects)</term>
<term>Populus (metabolism)</term>
<term>Populus (radiation effects)</term>
<term>Sugar Phosphates (metabolism)</term>
<term>Temperature (MeSH)</term>
<term>Transferases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse des flux métaboliques (méthodes)</term>
<term>Butadiènes (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Hémiterpènes (biosynthèse)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Lumière (MeSH)</term>
<term>Marquage isotopique (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oses phosphates (métabolisme)</term>
<term>Pentanes (MeSH)</term>
<term>Pigments biologiques (métabolisme)</term>
<term>Plastes (effets des radiations)</term>
<term>Plastes (enzymologie)</term>
<term>Plastes (métabolisme)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (métabolisme)</term>
<term>Régulation négative (effets des radiations)</term>
<term>Température (MeSH)</term>
<term>Transferases (métabolisme)</term>
<term>Érythritol (analogues et dérivés)</term>
<term>Érythritol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Erythritol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Hemiterpenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Carbon Dioxide</term>
<term>Erythritol</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
<term>Pigments, Biological</term>
<term>Sugar Phosphates</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Butadienes</term>
<term>Carbon Isotopes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Hémiterpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Plastes</term>
<term>Populus</term>
<term>Régulation négative</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plastes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plastids</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plastids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Metabolic Flux Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Composés organiques du phosphore</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Hémiterpènes</term>
<term>Oses phosphates</term>
<term>Pigments biologiques</term>
<term>Plastes</term>
<term>Populus</term>
<term>Transferases</term>
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse des flux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Down-Regulation</term>
<term>Plant Leaves</term>
<term>Plastids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Isotope Labeling</term>
<term>Light</term>
<term>Models, Biological</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Butadiènes</term>
<term>Isotopes du carbone</term>
<term>Lumière</term>
<term>Marquage isotopique</term>
<term>Modèles biologiques</term>
<term>Pentanes</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24590857</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>165</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.</ArticleTitle>
<Pagination>
<MedlinePgn>37-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.114.236018</ELocationID>
<Abstract>
<AbstractText>The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ghirardo</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>Louwrance Peter</ForeName>
<Initials>LP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bi</LastName>
<ForeName>Zhen</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rosenkranz</LastName>
<ForeName>Maaria</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pulido</LastName>
<ForeName>Pablo</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodríguez-Concepción</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brüggemann</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnitzler</LastName>
<ForeName>Jörg-Peter</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C114232">2-C-methylerythritol 4-phosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010860">Pigments, Biological</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013403">Sugar Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.-</RegistryNumber>
<NameOfSubstance UI="D014166">Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.2.1.-</RegistryNumber>
<NameOfSubstance UI="C109461">deoxyxylulose-5-phosphate synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RA96B954X6</RegistryNumber>
<NameOfSubstance UI="D004896">Erythritol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004896" MajorTopicYN="N">Erythritol</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064688" MajorTopicYN="N">Metabolic Flux Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010860" MajorTopicYN="N">Pigments, Biological</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013403" MajorTopicYN="N">Sugar Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014166" MajorTopicYN="N">Transferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24590857</ArticleId>
<ArticleId IdType="pii">pp.114.236018</ArticleId>
<ArticleId IdType="doi">10.1104/pp.114.236018</ArticleId>
<ArticleId IdType="pmc">PMC4012595</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Aug-Sep;68(16-18):2351-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2008 Mar;26(3):139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18222560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Apr 4;13(4):2005-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24650239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):16-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23383981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2001;15(7):501-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11268135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Aug;34(8):1241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 7;288(23):16926-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):894-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):70-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22142198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Apr 6;316(5821):73-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Sep 15;440(2):130-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):302-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):45188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):474-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16052321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 May;38(5):892-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24738572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(2):534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23822651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):890-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Sep;74(1-2):61-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20526857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Dec;2(12):674-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Jun 22;149(7):1525-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(5):593-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(1):27-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23668256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):628-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Mar;5(2):318-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):788-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23442171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Jun;33(6):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Oct;22(14):1011-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):4183-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24104567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):2188-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Jul;11(4):625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23262281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24102245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2006 Nov 10;71(23):8824-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 Jul;3(7):408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26666-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1939-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(2):244-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Jan;3(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e32387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2100-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):22901-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2006 Apr 1;78(7):2439-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16579631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jul 15;415(2):146-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 May;166(1):273-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21380850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):541-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Jun;71(8-9):918-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):724-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1441-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17057703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 May;33(5):781-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e17393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21387007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Apr;104(1):5-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20135229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):154-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 May;29(5):725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 16;421(6920):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jan;21(1):285-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Dec;64(18):5509-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24153419</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bi, Zhen" sort="Bi, Zhen" uniqKey="Bi Z" first="Zhen" last="Bi">Zhen Bi</name>
<name sortKey="Bruggemann, Nicolas" sort="Bruggemann, Nicolas" uniqKey="Bruggemann N" first="Nicolas" last="Brüggemann">Nicolas Brüggemann</name>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Pulido, Pablo" sort="Pulido, Pablo" uniqKey="Pulido P" first="Pablo" last="Pulido">Pablo Pulido</name>
<name sortKey="Rodriguez Concepci N, Manuel" sort="Rodriguez Concepci N, Manuel" uniqKey="Rodriguez Concepci N M" first="Manuel" last="Rodríguez-Concepci N">Manuel Rodríguez-Concepci N</name>
<name sortKey="Rosenkranz, Maaria" sort="Rosenkranz, Maaria" uniqKey="Rosenkranz M" first="Maaria" last="Rosenkranz">Maaria Rosenkranz</name>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<name sortKey="Wright, Louwrance Peter" sort="Wright, Louwrance Peter" uniqKey="Wright L" first="Louwrance Peter" last="Wright">Louwrance Peter Wright</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002140 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002140 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24590857
   |texte=   Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24590857" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020